19 August 2019 Industry News

Maxar selected to build, fly first element of NASA’s Lunar Gateway

Maxar has been selected to build and fly the first element of NASA's lunar Gateway. Image: Business Wire
Maxar has been selected to build and fly the first element of NASA's lunar Gateway. Image: Business Wire

Maxar Technologies, a global technology innovator powering the new space economy, has announced it has been selected by NASA to build and perform a spaceflight demonstration of the lunar Gateway’s power and propulsion element spacecraft.

Blue Origin and Draper will join the Maxar-led team in designing, building and operating the spacecraft through the demonstration period. The power and propulsion element is a key component to NASA’s overall plans to land American astronauts on the surface of the Moon by 2024, and will be the first segment of the Gateway tested in space.

Maxar previously conducted a four-month study to develop affordable and innovative electric-propulsion-enabled concepts for the power and propulsion element spacecraft. Building on the successful completion of the study, Maxar has been selected to proceed with development. The power and propulsion element will provide power, maneuvering, attitude control, communications systems and initial docking capabilities. Maxar is currently targeting launch of the element on a commercial rocket by late 2022.

“Maxar Space Solutions is proud to play a critical role in enabling American astronauts to build a sustainable presence on the Moon. Our power and propulsion element partnership enables NASA to leverage Maxar’s commercial capabilities to cost-effectively expedite plans for sustainable exploration of the Moon, while also providing significant benefits to American industry,” said Dan Jablonsky, Maxar CEO. “As a valuable part of Maxar, our Space Solutions group serves the global commercial and U.S. government satellite market.”

This firm-fixed price award includes an indefinite-delivery/indefinite-quantity portion and carries a maximum total value of $375 million. Following a successful demonstration period of up to one-year, NASA could acquire the spacecraft for use as the first element of the Gateway.

“The Gateway will give us a strategic presence on and around the Moon. It will drive our activity with commercial and international partners and help us explore the entire lunar surface and its resources,” said William Gerstenmaier, associate administrator, Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington. “We will ultimately translate that experience toward human missions to Mars.”

Maxar’s power and propulsion element design is based on our powerful 1300-class platform, which provides flexibility for a broad range of applications and technological advances. There are 91 spacecraft based on the 1300 currently on orbit for commercial operators – more than any other model of communications satellite. Maxar’s 1300-class spacecraft platform is also the basis for NASA’s Psyche mission, which will explore an all-metal asteroid beyond Mars in 2026, and NASA’s Restore-L spacecraft, which will refuel the Landsat-7 satellite in 2022.

High-power solar electric propulsion will be used to efficiently maneuver the power and propulsion element into its orbit and subsequently move the Gateway between lunar orbits over its lifetime to maximize NASA’s science and exploration operations. Maxar’s extensive experience with solar electric propulsion includes 36 spacecraft on-orbit today and more than 100,000 hours of firing time.

A key element of Maxar’s power and propulsion element design is the Roll Out Solar Array (ROSA). ROSA is a groundbreaking, compact, modular and scalable solar array system that rolls up for launch instead of folding like an accordion. ROSA is a highly mass-efficient, qualified technology that can be scaled up to 200kW and above for high-power operations. ROSA was successfully tested on the International Space Station in 2017 and is available for use on all of Maxar’s spacecraft platforms.

The operations of DigitalGlobe, SSL (Space Systems Loral) and Radiant Solutions were unified under the Maxar brand in February; MDA continues to operate as an independent business unit within the Maxar organization.

Maxar have also been selected by NASA to build a robotic arm called SAMPLR for use on the Moon. SAMPLR, which stands for Sample Acquisition, Morphology Filtering, and Probing of Lunar Regolith, will be the first robotic arm on the surface of Earth’s moon since the Surveyor missions more than 50 years ago.

Maxar will provide one of 12 payloads that NASA selected as part of the Artemis program to send the first woman and the next man to the Moon by 2024 in preparation for a human mission to Mars. SAMPLR will be mounted on a yet-to-be-named lander and will be used to acquire samples of lunar regolith. The arm is a flight spare from the Mars Exploration Rover mission, which included the long-lived rovers Spirit and Opportunity.

Popular articles

Popular articles

The remote 10-acre launch site at Sutherland Spaceport in the Scottish Highlands will be the ‘home’ spaceport of Orbex and will see the launch into low Earth orbits (LEO) of up to 12 rockets per year. Astronautics

Planning, designing and delivering a spaceport

There are presently many thousands of pieces of debris of different sizes floating around in space with the highest density of objects found in low Earth orbit. Opinion

Could ICAO be a NewSpace regulator?