Issue #4(10) 2016 Astronautics

Growing plastic-producing bacteria in space

Iris M. Madsen University of Copenhagen, Denmark
Stael Naseri University of Copenhagen, Denmark
Fouzia Hamid Akhtar University of Copenhagen, Denmark
Christina Toldbo University of Copenhagen, Denmark

NASA plans to put humans on Mars in the near future but many obstacles lie ahead. At the University of Copenhagen an interdisciplinary team of students have taken on the task to support one aspect of future Martian settlement in project called CosmoCrops. The ultimate goal of the project is achieving self-sufficiency on future space missions by designing a flexible bioreactor with a plug-and-play system that allows onsite production of bioplastic for 3D printing, pharmaceutical compounds and nutrition supplements.

Throughout time the human race has displayed a strong desire to explore and conquer new lands and in modern times a completely new frontier has opened up - space. But space exploration is limited by very high cost and extreme risk. Experience in low Earth orbit (LEO) and on a handful of manned flights to the Moon have taught us that future long-duration missions will face exponentially difficult challenges associated with transportation, working in space and staying healthy.

To support one astronaut for one year in Earth orbit requires around 8000 kg of supplies, excluding fuel. With a current absolute minimum estimated price of US$6600 per kg sent to Mars it is obviously necessary to reduce the weight requirement of supplies and consumables.

‘Synthetic biology’ could provide valuable solutions by supporting the design of metabolically engineered organisms that can produce components for astronaut survival. Such an engineered design may help solve the problem of weight and cost by on-site production of nutrients, medicine or equipment for use in the spaceship or on a planetary base.

An interdisciplinary team of students from the University of Copenhagen in Denmark have taken on this challenge in project CosmoCrops. Inspired by a project in 2015 called SpaceMoss, which genetically engineered moss to survive the harsh temperatures on Mars, the 2016 team decided to work with single celled organisms like bacteria.

Read more about the CosmoCrops project and how it may change the future of space travel and Mars settlement in the full version of the article, available now to our subscribers.

To continue reading this premium article, subscribe now for unlimited access to all online content

If you already have a login and password to access - Please log in to be able to read all the articles of the site.

Popular articles

See also


How to 3D-print a habitat on Mars

Space Environment

Surviving radiation for space colonisation

Space Security

Achilles’ heel

Popular articles

SLS Block 1, the initial configuration of NASA’s new super heavy lift launch vehicle, will be able to lift at least 70 metric tons to low Earth orbit and is the cornerstone of a new deep space exploration system. Special Reports

SLS ushers transformation of deep space exploration

Special Reports

Shielding the human genome

Scientist-astronaut Harrison-Schmitt collects lunar rake samples ranging in size from 1.3 to 2.5 cm during the Apollo 17 mission in 1972. The rake was used to collect rocks and rock chips Space Lounge

NASA’s space police wield full force of law